Res. Org. Geochem. 23/24, 131-138 (2008) 〔有機地球化学会 30 周年記念事業 地球・環境有機分子検索マニュアル No.15〕

技術論文

C10-C13 直鎖アルキルベンゼンの GC/MS による解析*

荻原成騎・平沢達矢** (2008年7月18日受付,2008年10月22日受理)

1. はじめに

アルキルベンゼンスルフォン酸の原料となるア ルキルベンゼンは,化学的・物理的に安定なため, 粉末洗剤原料以外にも,絶縁油,インキ溶剤,可 塑剤などに広く用いられている。一般に無色透明 な粘性のある液体で比較的沸点は高い。環境中の アルキルベンゼンの大部分は,アルキルベンゼン スルフォン酸合成時の未反応残留物である。その ため,アルキルベンゼンは,合成洗剤汚染の指標 として用いられている。(Eganhouse et al.1983)本 論では,前期白亜系小本層の黒色泥岩の分析時に 汚染として検出された C₁₀から C₁₃の直鎖アルキル 側鎖を持つアルキルベンゼン 19種の GC/MS 分析 結果を報告する。

2.試料

本研究に用いた試料は, 試料採集保管時に有機 地球化学分析を想定していなかったために, 古生 物学的研究や無機化学分析には支障がないが, 有 機地球化学的には汚染を被った試料である。分析 の結果, 汚染として高濃度の直鎖アルキルベンゼ ン(LAB)が検出された。検出された LAB は, 試 料を包装したポリ袋に可塑剤として用いられてい た可能性が高い。ポリ袋に型番などはなく, 製造 元に関する情報の記載はないが, アズワン社製ポ リ袋(ポリエチレン製, 0.1 mm 厚) 6-631 シリーズ 相当品である。

3. 分析方法

実験室に持ち帰った試料は、ハンマーにて粗砕 した後、メノウ乳鉢にて粉末化した。粉末試料5g を 50 ml テフロン製遠沈管に測り取り, 40 ml のジ クロロメタン/メタノール (93/7) を加えた。これ を超音波洗浄器中にて60間分抽出した後、遠心分 離を行った。抽出溶媒はナスフラスコに移した。 抽出操作は、3回繰り返した。ナスフラスコに集 めた抽出溶媒は、ロータリーエバポレーターおよ び窒素ガス気流下にて濃縮した。得られたビチュ メンは、シリカゲルカラムクロマトグラフィーに よって、脂肪族炭化水素画分(N-1)、多環芳香族 炭化水素画分(N-2).極性画分に分画した。カラ ムにはパスツールピペット(内径8mm)を用い. 3 wt% H₂O に調整したメルク社製シリカゲル (70-230 mesh) 2 ml を充填した。N-1 画分はヘキサン4 ml. N-2 画分はヘキサン/ジクロロメタン (2/1) 4 ml. 極性画分はジクロロメタン/メタノール (1/1) 7 ml を用いて分画した。本研究では、N-1 画分を 分析に用いた。

GC/MS 測定には ThermoQuest 社製 Voyager を使 用した。試料はオンカラム注入法,使用カラムは HP-5ms (内径 0.25 mm,長さ 30 m,膜厚 0.25 μ m) であった。GC 昇温条件は 40℃で 1 分保持し、4℃ /分 で 300℃まで昇温した後、30 分保持した。質量 分析計は全イオンスキャンモード (m/z 50-520), イオン化電圧は 70 eV に設定した。

分析試料中にはC12からC30までのn-アルカ

*GC/MS analysis of C10-C13 linear alkylbenzene isomers

**東京大学大学院理学系研究科地球惑星科学専攻 〒113-0033 東京都文京区本郷 7-3-1 東京大学理学部 1 号館 e-mail: ogi@eps.s.u-tokyo.ac.jp, Tel: 03-5841-4524, Fax: 03-5841-4555 Shigenori Ogihara and Tatsuya Hirasawa: Department of Earth and Planetary Science, Graduate School of Science, The

University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033

Fig. 1. Total ion chromatogram and m/z 91 and 65 mass chromatograms of the aliphatic fraction isolated from black shale contaminated by linear alkylbenzenes.

ンが含まれていたので、これらの保持時間を用 いて LAB の GC 保持指数 (Retention Index) を計 算した。本研究では GC 保持指数は、Kissin et al. (1986) に従い、以下のように計算した。

$$\begin{split} \text{KF} \ (X) &= (\,(n-1) + (\text{RTX} - \text{RTC}_{n-1}) \\ & / \,(\text{RTC}_n - \text{RTC}_{n-1}) \,) \times 100 \end{split}$$

ここで、KF (X) は化合物 X の GC 保持指数、RTX は化合物 X の保持時間 (min)、RTC_n は化合物 X の直後に湧出する n-アルカンの保持時間 (min)、 RTC_{n-1} は化合物 X の直前に湧出する n-アルカン の保持時間 (min) である。本研究では化合物 X は LAB である。保持時間測定の GC 条件は、4℃/分 の昇温であった。

4.結果

Fig.1にN-1 画分のトータルイオンクロマトグ

ラム (TIC) と LAB に特徴的なフラグメントイオ ンである m/z 91 と m/z 65 のマスクロマトグラム を示す。C10-LAB が 4 種, C11, C12, C13-LAB がそ れぞれ 5 種, 合計 19 種の LAB が検出された。Fig. 1 に検出した LAB の TIC 上のピーク番号, Fig. 3 にマススペクトルおよび構造を示した。また, 保 持指数, 文献値との比較, 文献データと共通した 特徴的なフラグメントイオンを Table 1 に示した。

アルキルベンゼンのマススペクトルの特徴と解釈

アルキル側鎖の芳香族化合物では、環に対してβ 位での開裂が起こりやすい。

Fig. 2にLABの構造と開裂を示す。nとmは、
1-(アルキル)m(アルキル)mベンゼンにおけるアルキルチェーンの長さを示す。

ここで, n>m>1 であり, n+m=10 の場合には

D1-*	Compound	Formula	Mol.wt.	Retention Index		Base Peak	Diagnostic
Peak*				This study (HP-5ms)	Reference** (DB-1)	(m/z)	fragments (m/z)
a	1-Butylhexylbenzene	C16H26	218	1541	1526	91	147 161
b	1-Propylheptylbenzene	C16H26	218	1550	1534	91	133 175
с	1-Ethyloctylbenzene	C16H26	218	1569	1553	91	119 189
d	1-Methylnonylbenzene	C16H26	218	1601	1588	105	218
e	1-Pentylhexylbenzene	C17H28	232	1633	1620	91	161 232
f	1-Butylheptylbenzene	C17H28	232	1636	1626	91	147 175
g	1-Propyloctylbenzene	C17H28	232	1646	1636	91	133 189
h	1-Ethylnonylbenzene	C17H28	232	1667	1656	91	119 203
Ι	1-Methyldecylbenezene	C17H28	232	1703	1692	105	232
j	1-Pentylheptylbenzene	C18H30	246	1731	1719	91	161 175
k	1-Butyloctylbenzene	C18H30	246	1736	1723	91	147 189
1	1-Propylnonylbenzene	C18H30	246	1748	1735	91	133 203
m	1-Ethyldecylbenezene	C18H30	246	1769	1755	91	119 217
n	1-Methylundecylbenzene	C18H30	246	1807	1791	105	246
0	1-Pentyloctylbenzene	C19H32	260	1829	1814	91	161 189
р	1-Butylnonylbenzene	C19H32	260	1836	1821	91	147 203
q	1-Propyldecylbenezene	C19H32	260	1848	1833	91	133 217
r	1-Ethylundecylbenzene	C19H32	260	1871	1856	91	119 231
s	1-Methyldodecylbenzene	C19H32	260	1910	1894	105	260

Table 1. Mass fragmentation data for 1-(alkyl)_m(alkyl)_nbenzene isomers.

*Peak numbers refer to chromatogram in Fig.1.

** Peng and Hua (1992)

Identificatin level : The mass spectra are idential to what reported in reference

1-Methylalkylbenzene

Fig. 2. Structures of the linear alkylbenzenes and the point of bond breakage. The *m* and *n* in 1-(alkyl) $_{m}(alkyl)_{n}$ benzenes represented the carbon numbers in the alkyl chain with n > m and m + n = 10 for $C_{16}H_{26}$ isomers, 11 for $C_{17}H_{28}$ isomers, 12 for $C_{18}H_{30}$ isomers and 13 for $C_{19}H_{32}$ isomers.

C10-LAB (C16H26) を表す。n > m > 1の場合,LAB は Fig. 2 (左) に示した開裂によって, $[M-(14m + 1)]^+$ および, $[M-(14(n-1)+1)]^+$ イオンが生 じる (ここで M は分子イオン)。これらのリアレ ンジメントによって基準ピークであるトロピニウ ムイオン (m/z91) が形成される。m/z91 は,n >m > 1のLAB を特徴付けるイオンである。引き続 いてトロピニウムイオンからアセチレンの脱離が 生じ,m/z65 イオンが形成される (Kuck, 1990)。 Fig. 1 にm/z91 とm/z65 のマスクロマトグラムを 比較して示す。二つのマスクロマトグラムはよく 一致する。m/z 91 と m/z 65 イオンの強度は平均して 100:3 であり、トロピニウムイオンの約 3%からアセチレン脱離により m/z 65 イオンが生成されている。また、分子イオンは基準イオン (m/z91)の 20%以下である。

これに対して, m=1 の場合, すなわち 1-メチル (アルキル)ⁿベンゼンの場合には, β 位での開裂に よって生じる m/z 105 が基準イオンとなり (Fig. 2 (右)), このフラグメントのリアレンジメントを 起源とするわずかな (2%程度) m/z 91, および分 子イオンが特徴的である。

これらのマススペクトルは, Peng and Hua (1992) で示されたマススペクトルとよく一致す る。Table 1 に示した GC 保持指数は, Peng and Hua (1992) と比較すると,本研究の値が系統的にわず かに大きい。これは使用カラムに起因する差異と 考えられる。

謝 辞

本分析は,東京大学大学院地球惑星科学専攻に おける機器分析実習(有機地球化学分析)の結果 である。実習補助として篠田千恵女史が貢献し た。また,山本正伸准教授(北海道大学)と匿名の 査読者の方,及び三瓶良和編集委員長には貴重な

Fig. 3-1. Mass spectra of C₁₆H₂₆ linear alkylbenzene isomers. Peak numbers are given in Table 1.

Fig. 3-2. Mass spectra of C₁₇H₂₆ linear alkylbenzene isomers. Peak numbers are given in Table 1.

Fig. 3-3. Mass spectra of C₁₈H₃₀ linear alkylbenzene isomers. Peak numbers are given in Table 1.

Fig. 3-4. Mass spectra of C₁₉H₃₂ linear alkylbenzene isomers. Peak numbers are given in Table 1.

コメントを頂きました。記して深く感謝します。

参考文献

Egahouse R.P., Ruth E.C. and Kaplan I.R.(1983) Determination of long-chain alkylbenzenes in environmental samples by argentation thin-layer chromatography/high resolution gas chromatography and gas chromatography/mass spectrometry. *Anal. Chem.* **55**, 2120-2126.

Kissin Y.V., Feulmer G.P. and Payne W.B. (1986) Gas

chromatographic analysis of polymethyl-substituted alkanes. *J. Chromatographic Sci.* **24**, 164-169.

- Kuck D. (1990) Mass spectrometry of alkylbenzenes and related compounds. Part I. Gas-phase ion chemistry of alkylbenzene radical cations. *Mass Spectrometry Reviews* 9, 187-233.
- Peng C.T. and Hua R.L. (1992) Prediction of retention indexes: IV. Chain branching in alkylbenzene isomers with C10-13 alkyl chains identified in a scintillator solvent. J. of Chromatography 589, 231-239.