Res. Org. Geochem. 23/24, 147-157 (2008) 〔有機地球化学会 30 周年記念事業 地球・環境有機分子検索マニュアル No.17〕

技術論文

彗星塵有機物のX線吸収端近傍構造(XANES)分析*

薮田ひかる**, *** · George D. Cody *** · A. L. David Kilcoyne **** 荒木 暢**** · Conel M. O'D. Alexander *** · Scott Sandford *****

(2008年9月2日受付, 2008年9月11日受理)

1. はじめに

軟X線 (soft X-ray) は,約10-2000 eVのエネル ギーを持つ放射光のことで,一般にいう 'X線', つまりそれ以上のエネルギーを持つ硬X線 (hard X-ray) とは区別される (Fig. 1)。軟X線と硬X線 との大きな相違点は,透過力である。硬X線は大 気を透過するが,軟X線は大気に吸収されるとい う特徴がある。そのため,軟X線実験を行うに は,放射光リングからチャンバーまでをつなぐ超 高真空環境を要する。その他にも,軟X線はベリ リウムなどの窓材に吸収されやすいなど諸々の制 限があり,硬X線領域の測定に比べ発展が遅れて いた。しかし,最近では測定環境の建設に高度な 技術が適用されることが可能となり,軟X線を用 いた測定法が多分野において急速な進歩を遂げて いる。

軟 X 線が大気に吸収されることを言い換える と、炭素 (C)、窒素 (N)、酸素 (O) 原子に吸収さ れるということである。つまり、軟 X 線は有機分 子にも吸収される。さらに、軟 X 線を吸収した 各原子の内殻軌道 (1s 軌道、あるいは K 殻)から は光電子が放出される。光電子が放出されるため に必要な最小のエネルギーを吸収端と呼び、C 原 子の1s 軌道についての吸収端 (C1s) は~285 eV, N 1s 吸収端は~405 eV, O 1s 吸収端は~540 eV で ある (Stöhr, 1992)。放出された光電子は非占有軌 道あるいはイオン化準位のすぐ上の準連続状態 (例:π*軌道, σ*軌道)へ励起するが (Stöhr, 1992; 図は薮田, 2008, ROG 本号, Fig. 8), この時にと りうる励起状態は原子間の結合すなわち分子の 電子構造によって異なり、X線スペクトルの吸 収端から 10 eV 程度の近傍領域に複雑な微細構造 (XANES) として現れる。有機分子の XANES は、 吸収端近傍微細構造 (Near Edge X-ray Absorption Fine Structure, NEXAFS) とも呼ばれる。一方,近 傍領域よりも高いエネルギーの広範囲に見られる 波打ち構造のスペクトルは広範囲X線吸収微細構 造 (Extend X-ray Absorption Fine Structure, EXAFS) と呼ばれ、光電子と周囲の原子との散乱・干渉を 反映するもので、XANESとは区別される。有機 分子の散乱能は低く,原子間の結合距離も小さい ため情報が得られにくいことから、本論文では EXAFS については扱わない。

有機分子の XANES を行うために併用されるこ とが多いのが,走査型透過 X 線顕微鏡 (Scanning Transmission X-ray Microscope, STXM) である。 STXM は,試料の X 線透過像にエネルギー吸収

*X-ray absorption near edge spectroscopy analyses of organic matter in comet particles

**大阪大学大学院理学研究科宇宙地球科学専攻 〒560-0043 大阪府豊中市待兼山町 1-1

E-mail: hyabuta@ess.sci.osaka-u.ac.jp, Tel: 06-6850-5496, Fax: 06-6850-5480

- * * *Hikaru Yabuta, George D. Cody, Conel M. O'D. Alexander: Carnegie Institution of Washington, 5251 Broad Branch Road, Washington DC 20015 USA
- ****A. L. David Kilcoyne, Tohru Araki: Advanced Light Source, 1 Cyclotron Road, MS 7R0222, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 – 8225 USA
- *****Scott Sandford: NASA Ames Research Center, Astrophysics Branch Mail Stop 245-6 Moffett Field, CA 94035 USA

Hikaru Yabuta: Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan

Fig. 1. Synchrotron radiation lights spanning different wavelengths. The original image (Credit: Spring-8, http://prwww.spring8.or.jp/intro_sr/page3_1b.shtml) is modified.

の違いが見られることを利用して、サブミクロン サイズの微小な試料中から有機分子を識別するた めの手法である。STXM が本格的に開発されたの は1990年代で、それ以後多岐にわたる研究分野 において急速に活用されている。例えば、材料科 学 (Ade et al., 1992; 1995; Ade and Hsiao, 1993; Ade and Urguhart, 2002), 生物化学 (Kirz et al., 1995), 環境化学 (Myneni, 2002), 古生物学 (Boyce et al., 2002), 有機地球化学 (Cody et al., 1996; 1998), 惑 星科学 (Flynn et al., 2003; Keller et al., 2004), と いったようにである。XANES と STXM を組み合 わせることにより微小な有機物の局所構造分析を 行うことができるという利点は.稀少な地球外有 機物の構造分析にまさに適合しており、近年にお ける STXM-XANES を用いた地球外有機物研究の 成果は注目に値する。

本論文では、NASA による彗星塵サンプルリ ターン計画、スターダストミッションで地上 に持ち帰られた 81P/Wild 2 彗星の塵に含まれ る微小有機物を STXM-XANES で分析した結果 (Sandford et al., 2006; Cody et al., 2008a) を紹介す る。

2. 試料

スターダスト探査機の回収器に衝突し捕獲さ れたWild2彗星塵は、エアロジェルに高速貫入 した跡や、アルミニウム枠に衝突してできたク レーターに沿って、多数の粒子となって分かれて いた(Brownlee et al., 2006)。その状態から試料調 整用の極微針で抽出された塵粒子は(Westphal et al., 2004; 中村ら, 2007), エポキシ樹脂あるいは 硫黄で包埋後, ウルトラマイクロトームとダイア モンドナイフを用いて 120~140 nm の薄片にした ものを, 透過型電子顕微鏡 (Transmission electron microscopy, TEM) 観察に使われる格子状の試料サ ポートに乗せた状態で配分された。本研究では 8 種の彗星塵粒子試料 (サンプル No. 1~8) を分析 した。

3. 分析方法

STXM-XANES 分析は、アメリカ合衆国カリフォルニア州にあるバークレー国立研究所のシンクロトロン放射光施設,Advanced Light Source (ALS),ビームライン 5.3.2 で行った。Fig. 2 にビームラインの概要図を示す。ビームライン 5.3.2 では,偏向磁石で軟X線 (250 – 700 eV, 10⁷ photons /sec)を発生させ、トロイダルミラーで収束、球面回折格子で分光後、入射スリットで平行化され分散し、出射スリットで単色光を得られるようになっている。また、超高真空のビームラインと大気下の STXM チャンバー (測定時はヘリウム雰囲気下)を分けるために Si₃N₄ 窓を置いている。

Fig. 3aにSTXM 装置の写真を示した。その拡大 写真をFig. 3bに,模式図をFig. 3cに示した。単色 光はゾーンプレートで集光され,ゾーンプレート とサンプルプレート間に置かれた Order selection aperture (OSA) と呼ばれる小さなピンホールで 1次回折光を得ることにより (Figs. 3b, 3c),非 常に高い空間分解能 (<40 nm) が実現される (Kilcoyne et al., 2003)。サンプルプレート (Fig.

Fig. 2. Schematic of the Advanced Light Source Beamline 5.3.2 and STXM. The figure is taken from STXM 5.3.2 User Manual. Image Credit: Advanced Light Source Beamline 5.3.2.

Fig. 3. (a) Photograph of STXM at Advanced Light Source Beamline 5.3.2 (Photo courtesy by Henner Busemann), (b) Close-up side view of STXM (Kilcoyne et al., 2003), (c) Focusing scheme of a STXM (Kilcoyne et al. 2003), and (d) Photograph of STXM sample plate and the STXM images of terrestrial kerogen. (b) and (c) are reproduced by permission from International Union of Crystallography.

3d)には、前述した試料サポートの大きさに穴が 開いており、穴に合わせて設置した試料サポート に対して垂直に入射してくる X 線が透過する。サ ンプルプレートは、ピエゾステージで x, y 軸方向 に精密微動できるようになっていて、X 線エネル ギーを変化させながら試料を走査することにより X 線透過像が得られる (Fig. 3d)。STXM が走査可 能な最大領域は4000×2000 ピクセル (20×4 mm), 最少ステップサイズは 2.5 nm である。試料を透過 した後の X 線の強度を I, 試料のない部分を透過し た後の X 線の強度を I₀ とすると,吸光度 (Optical density, OD) μt は下記の式で与えられる。

Fig. 4. STXM image (20 μm × 20 μm) of a Comet Wild 2 particle from the sample No. 2 acquired at a) 280 eV (just below C1s XANES region) and b) 290 eV (within C1s XANES region). Organic matter is enclosed in square rounds 1 - 4.

 $OD = \mu t = ln (I_0/I)$

ここでµは線吸収係数,tは試料の厚さである。µはX線のエネルギーEに依存する(岩田ら, 2006)。

4. 分析結果

4.1. STXM による有機物の識別と XANES スペク トルによる官能基の同定

Fig. 4 は. 2 つの異なる X 線エネルギーで取得 した Wild 2 彗星塵粒子サンプル No. 2 を, 280 eV と 290 eV で走査した STXM 画像 (20 µm × 20 µm) である。有機物を識別するには、炭素の吸収端よ り低いエネルギー (280 eV) を吸収せず. 吸収端 より高いエネルギー (290 eV) を吸収する領域を 探す。このような領域を、C, N, Oに相当するエ ネルギー領域でそれぞれ測定し、C, N, O-XANES スペクトルを得た (Fig. 5)。ピーク帰属の一覧を Table 1 に示す。サンプル No. 2 の C-XANES スペ クトルでは. 288.2 eV に比較的鋭いピークが検出 された。このピークは、アミド基 (NHx(C*=O) C) のカルボニル炭素 (*を付した炭素原子) の C $1s \rightarrow \pi^*$ 遷移に相当する。ここで, N-XANES スペ クトルでも 401.4 eV にアミド基の N 1s $\rightarrow \pi^*$ 遷移 に相当するピークが検出されており、この帰属が 妥当であることが確認できる。また、C-XANES スペクトルの286.7 eV 付近に検出されたピーク

はニトリル基 (C*=N)のC 1s → π^* 遷移,もしく は 286.5 eV にエネルギー吸収を示すビニル - ケ ト基 (C=C-C*=O)のC 1s → π^* 遷移,のどちら かに相当することが考えられるが,同じ試料の N-XANES スペクトルで 399.9 eV 付近にニトリル 基 (C=N*)のN 1s → π^* 遷移に相当するやや幅広 いピークが検出されていることから,前者である 可能性が高い。C-XANES スペクトルの~ 285 eV に検出されたピークは,芳香族炭素あるいはオレ フィン (C=C*-H, C)のC 1s → π^* 遷移を示してい る。O-XANES スペクトルの530 – 532 eV に検出さ れるピークはカルボニル基 (C=O*)のO 1s → π^* 遷移であることが知られるので,C-,N-XANES ス ペクトルで同定されたアミド基のカルボニル酸素 を反映している可能性が考えられる。

Fig. 6 に, 8 種の Wild 2 彗星塵粒子サンプル の C-XANES スペクトルをまとめた。また比較 のために,炭素質コンドライト (Allende (CV3), EET92042 (CR2))中の不溶性有機物と,惑星間 塵 (Interplanetary dust particle, IDP)のC-XANES ス ペクトルを併せて示している。前述の彗星塵粒子 サンプル No. 2 と,サンプル No. 3 のスペクトル は類似している一方で,その他のサンプルは異な る種類の官能基を含んでいることが分かる。例え ば,彗星塵粒子サンプル Nos. 4, 5,6 の C-XANES スペクトルでは 287.5 eV に顕著なピーク (ピーク

Fig. 5. STXM image, its focused image (5 μ m × 5 μ m) and C-, N-, O-XANES spectra of Comet Wild 2 particle sample No. 2.

c) が検出された。一般に、このエネルギーで見ら れるピークは. 脂肪族炭素 (CHx-C) の C 1s → 3p /s*遷移に相当する。C 1s → 3p/s*遷移とは、1s 軌道の光電子が 3p 軌道のリュードベリ状態とσ *軌道の混成状態に励起することを指し、この時 のX線吸収は主にC原子あたりのH原子の数が 多い分子, つまり脂肪族炭素やアルコール基など で強く、特にメチル基で最も強いことが知られる (Stöhr, 1992; Hitchcock and Mancini, 1994)。エタン 分子のメチル基は 287.9 eV で C 1s → 3p/s*遷移を 示し (Stöhr, 1992). テトラメチルシラン (Si(CH₃) 4) のメチル基は287.3 eV で C 1s → 3p/s*遷移を示 す (Hitchcock and Mancini, 1994) ことがこれまで に報告されている。これらの点に基づくと、サン プル Nos. 4, 5, 6 で見られる 287.5 eV のピークは、 彗星塵固有の脂肪族炭素に加え、エアロジェル由 来の Si-CH₃のメチル基の存在を反映している可

能性も考えられる。サンプル No. 5 の C-XANES スペクトルでは、~288.7 eV にカルボニル基 (OR (C*=O) C) の C 1s $\rightarrow \pi^*$ 遷移を示すピーク (ピー ク e) も検出された。

サンプル Nos. 7,8 は同じ彗星塵試料の異なる部 分であり、両者の C-XANES スペクトルは芳香族 炭素、ニトリル基、カルボニル基が似た強度で検 出されたことから、類似の化学作用を経験してい ることが示唆される。一方、サンプル No. 1 は、 どの試料とも似つかない C-XANES スペクトルを 示した。289.3 eV 付近に顕著に検出された幅広い ピーク (ピーク f) はおそらく、尿素基のカルボニ ル炭素 (NHx (C*=O) OR) のC 1s → π^* 遷移、あ るいはアルコールかエーテル基 (C* Hx-OR) の C 1s → 3p/s*遷移、あるいは両官能基の存在を示す と推測される。

Wild2彗星塵と、炭素質コンドライトから分離

Table 1. Various C-, N-, and O-XANES transitions and associated functional groups (Cody et al., 2008a). Reproduced by permission from Meteoritics & Planetary Science, ©2008 by the Meteoritical Society.

Photon energy (eV)	Functional group	Carbon	Transition	
283.7	Quinone	C=C*-C=O	1s-π*	
285.2	Aromatic and Olefinic	C=C*-H, C	$1s-\pi^*$	
286.1-286.3	Aryl, vinyl-keto	C=C*-C=O	$1s-\pi^*$	
286.5	Vinyl-keto	$C=C-C^*=O$	$1s-\pi^*$	
286.7-286.9	Nitrile	$C^* \equiv N$	$1s-\pi^*$	
287.2	Enol	C=C*-OR	$1s-\pi^*$	
287.3-288.1	Aliphatics	CH _x -C, H	1s-3p/s*	
287.9-288.2	Amidyl	NH _x (C*=O)C	$1s-\pi^*$	
288.4-288.7	Carbonyl	OR(C*=O)C	$1s-\pi^*$	
288.9-289.8	Urea	NHx(C*=O)NHx	$1s-\pi^*$	
289.3-289.5	Alcohol, Ether	C*H _x -OR	1s-3p/s*	
290	Carbamoyl	NH _x (C*=O)OR	$1s-\pi^*$	
292-296	Carbonate	RO(C*=O)OR	1s-π*	
N-XANES				
Photon energy (eV)	Functional group	Nitrogen	Transitior	
398.8	Imine	C=N*	1s-π*	
399.8	Nitrile	$C \equiv N^*$	$1s-\pi^*$	
401.9	Amidyl	N*Hx(C=O)C	$1s-\pi^*$	
402.1-402.3	Amine, Pyrrole	C-N*Hx	1s-3p/s*	
402.5-402.6	Amino	C-N*Hx	1s-3p/s*	
403	Urea	CO-N*Hx	1s-3p/s*	
O-XANES				
Photon energy (eV)	Functional group	Oxygen	Transitior	
531.2	Ketone	C=O*	$1s-\pi^*$	
532	Carboxyl	O-C=O*	$1s-\pi^*$	
534.4	Alcohol, Ether	CHxO*	1s-3p/s*	
534.0	Enol	$C - C O^*$	10 3n/0*	

した不溶性有機物の C-XANES スペクトルを比較 すると、Wild 2 彗星塵の有機物の方が芳香族炭素 の割合が低く、窒素と酸素に富んだ多様な官能基 を含み、8 試料のスペクトルからその官能基組成 は非常に多様であることが分かる。一方、炭素質 コンドライトの不溶性有機物は芳香族炭素の割合 が優位で、異なる隕石グループ間(CR2, CV3)で も彗星塵ほどにはスペクトルに顕著な違いは見 られなかった。Wild 2 彗星塵と無水惑星間塵の C-XANES スペクトルの比較では、Wild 2 彗星塵 の有機物の方が惑星間塵よりも芳香族炭素が少な いが、ニトリルとカルボニルのシグナルが顕著に 見られる点では類似していることが分かる。

彗星塵の N-XANES スペクトルについては,前 述したサンプル No. 2 のように,アミドやニトリ ルなどのピークが明瞭に検出できるものもあった が、全体的に C-XANES よりも S/N 比が低く、特 徴に乏しい幅広いピークを示すものが多かった。 特に、398 – 405 eV の領域はキャラクタリゼー ションが複雑であるため、おそらくアミノ (C-N* Hx)、尿素 (CO-N* Hx)、カルバモイル (R-N* H (CO) OR')等の、エネルギー吸収の似た複数の含 窒素官能基の N 1s 遷移が反映されていると考え られる。O-XANES スペクトルではどの試料でも カルボニルのピークが現れるのみで、C-XANES でカルボニルが検出されたことを確認するために 用いられた。

4.2. N/C, O/C の見積もり

得られた XANES スペクトルから彗星塵有機

Fig. 6. C-XANES spectra of organics associated with Comet Wild 2 particles. Included for comparison are spectra of an anhydrous interplanetary dust particle (IDP) and insoluble organic matter isolated from CR2 (EET92042) and CV3 (Allende) chondrites. Peaks corresponding to specific functional groups are indicated with letters a-f. a: 1s- π^* transition at ~285 eV for aromatic or olefinic carbon, b: 1s- π^* transition at ~286.7 eV for nitrile, c: 1s-3p/s* at~287.5 eV for aliphatic carbon, d: 1s- π^* transition at ~288.2 eV for carbonyl carbon in amide moieties, e: $1s-\pi^*$ transition at $\sim 288.5 \text{eV}$ for carbonyl carbon in carboxyl or ester moieties, f: 1s-3p/s* transition at~289.5eV for alcohol or ether moieties (Cody et al., 2008a). Reproduced by permission from Meteoritics & Planetary Science, ©2008 by the Meteoritical Society.

物の N/C, O/C 比を見積もった。これらの元 素組成を見積もる上で配慮を要したことは,1) C-XANES のオリジナルスペクトルは,彗星塵固 有の有機物と,試料を包埋したエポキシ樹脂の構 造情報の合計である点,および2) O-XANES のオ リジナルスペクトルは,彗星塵固有の有機物と, 試料の捕獲材となったエアロジェルの構造情報の 合計である点,である。1) について,純粋なエポ キシ樹脂の C-XANES スペクトルでは,285.15 eV と287.2 eV に芳香族炭素とエノール基のC 1s $\rightarrow \pi^*$ 遷移を示すピークがそれぞれ鋭く現れるのが特徴

Table 2.	Elemental chemistry derived for samples via
	C, N, and O-XANES (Cody et al., 2008a).
1	Reproduced by permission from Meteoritics &
]	Planetary Science, ©2008 by the Meteoritical
	Society.

Sample No.	O/C	N/C	Si/C
1	0.67	0.07	0.02
2	0.11	0.23	0.13
3	0.18	0.24	0.13
4	0.25	0.07	0.52
5	0.28	0.12	0.51
6	0.27	NA	_
7	0.19	0.07	0.19
8	0.22	0.12	0.17

NA: not analyzed

なので、区別が容易である。そして、オリジナル スペクトルの全ピーク強度から、エポキシの寄 与の分を差し引くことによって、彗星塵のみの C-XANES スペクトルを得ることができる。2) に ついては、エアロジェルの平均組成が SiO₂₁₃ であ ることが²⁹Si-NMR より明らかになっており、彗 星塵固有の O の割合のみを得るには、O-XANES のオリジナルスペクトルからエアロジェルによる O の寄与を差し引く必要がある。

彗星塵粒子サンプル No. 5 の C-, N-, O-XANES データを合計したスペクトルフィッティン グ(Fig. 7)から試料の元素組成を見積もると, C100N12O137Si51となる。ここで,全ての Si はエア ロジェル由来と考えると,エアロジェルの平均 組成(SiO2.13)より,彗星塵に固有の元素組成は C100N12O28と表記することができる。このように して見積もられた彗星塵有機物の N/C, O/C 比を Table 2 にまとめた。

5. STXM-XANES とその他の構造分析法との比較

Table 3 に、その他の構造分析法との比較を示した。まず、固体 NMR との比較において、官能基の定性・定量評価という点では NMR の方が信頼性が高い。そうはいっても、NMR が試料中の平均構造の情報を与えるのに対し、STXM-XANESは局所構造の情報を与えるという点が、STXM-XANESの最大の強みであろう。また、固体 NMR分析が最少約 20 mg の試料を要する一方、STXM-

	STXM-XANES	Solid-state NMR	micro FT-IR	micro-Raman	TEM-EELS
Functional group chemistry	Sufficient identification and quantification	Trustworthy quantification	Sensitive for specific carbon (e.g., -CH ₃ , -CH ₂ , -CH)	Poor, but sensitive for crystallinity	Density distinction
Acquisition time	Relatively rapid	Very long	Rapid	Rapid	-
Dissemination	Not yet	Yes	Yes	Yes	Yes
Energy resolution	0.03–0.1 eV				>1eV
Sample damage	Possible conversion of Polyalcohol to Vinyl-keto	No	No	Laser	Electron beam

Table 3. Comparison of STXM-XANES, solid-state NMR, micro FT-IR, micro Raman and TEM-EELS.

Fig. 7. An example of a fit of C-, N-, and O-XANES spectra of a cometary organic solid. Atomic absorption cross sections are used directly, where the contribution from carbon is included with close spaced fine dashed line, nitrogen (solid line), oxygen (broad dashed line), and silica (fine open spaced dashed line). The sum of these provides the quantitative fit resulting in a precise determination of atomic C, N, O, and Si (Cody et al., 2008a). Reproduced by permission from Meteoritics & Planetary Science, ©2008 by the Meteoritical Society.

XANES は超微小量の試料で十分に測定を行う ことができる点でも,分析対象の幅広さの点で 有利である。測定時間も,1日-1週間を要する NMR に比べて20分-2時間程度で測定が完了す る STXM-XANES の方がきわめて迅速で効率的で ある。また,軟X線のエネルギーを適した内殻吸 収状態に合わせることによって,NMRでは検出 されない構造特徴を引き出すことも可能となる。 タイプ3コンドライト隕石中の不溶性有機物の XANES スペクトルからグラフェン構造が検出さ れたのがその例である (Cody et al., 2008b)。 微小領域での官能基分析という点では,顕微 フーリエ変換赤外分光分析(顕微 FTIR)も代表 的な分光分析の1つである。FTIRの優れた点は, 脂肪族炭素のメチル(-CH₃),メチレン(-CH₂), メチン(-CH)基の区別,およびカルボキシル基 (COOH)とエステル基(COOR)の区別が可能で ある点である。XANESスペクトルでは,脂肪族 炭素あるいはカルボニル炭素に由来するピークは それぞれほぼ同じX線エネルギーで現れるため, 非常に類似した官能基同士の区別は難しい。しか し,複数のピークが近いエネルギー値で重なって いる場合を除けば,異なる官能基間での定量的比較は XANES で可能である。この点で,FTIR は測定する分子の化学結合によって赤外吸収の強弱が異なるため,異なる官能基を定量的に比較することは難しい。

顕微ラマン分光分析は、官能基分析にはあまり 用いられないが、有機固体の結晶性評価に優れ る。最近では、ラマン分光を利用して、隕石中の 鉱物と有機炭素の化学状態を理解できるように なった(El Amri et al., 2005)。STXM-XANESと相 補的に適用するのにふさわしい手法の一つと考え られる。また、この手法では、レーザーによる有 機物試料の変性は多少なりとも起こるので、でき る限り弱いレーザー強度(例えば~55 μW 程度) で測定することに配慮しなければならないだろ う。

STXM-XANES では,得られる化学情報が TEM-電子エネルギー損失分光法 (Electron Energy-Loss Spectroscopy, EELS) と似ており、比較されること が多い。事実, STXM は日本にまだ導入されてお らず、今日における普及性の点では TEM-EELS の方がまさっている。ただし、TEM は密度に違 いのある成分を識別することができるが、そうで ない限りは、STXMのようにX線吸収の違いに より分子構造を明らかにすることはできない。加 えて、エネルギー分解能では TEM-EELS (>1eV) よりも STXM-XANES (<0.1 eV) の方が高い点で XANES の方が優れている。また. STXM-XANES が有機高分子分析専用に開発された手法であるの に対して、TEM-EELS は本来、無機材質の分析に 開発された手法であり、TEM-EELSの電子ビーム が有機物試料を変性しうる点に十分意識されてこ なかった。

STXM-XANES による有機物試料の変性につい ては、強いていえば、光吸収過程で発生する高エ ネルギーの2次電子がポリアルコールの OH を脱 離する結果、ビニルーケト基に変化するといった 例などが報告されている (Cody, 2000)。むしろ、 この2次的変性を利用して、ビニルーケト基の検 出からポリアルコールの存在を推測できるといっ た長所もある。この種の構造変化は試料の分子構 造によって様々であるが、少なくとも地球惑星物 質試料に関しては再現性のある分析結果が得られ ているようである。

謝 辞

81P/Wild 2彗星塵試料のXANES分析にあたり, スターダストミッションに関わった全ての方達 に御礼申し上げます。特に,NASA ジョンソン宇 宙センターの Mike Zolensky 博士と中村圭子博士 (テキサス州,アメリカ合衆国)には,試料を注意 深く調整し著者らに配布してくださいました。隕 石有機物の試料調整にあたり,ウルトラマイクロ トームを提供してくださった,カーネギー研究所 のLarry Nittler 博士 (ワシントン DC,アメリカ合 衆国)に心から感謝申し上げます。本論文を査読 くださり的確にご指摘くださいました東北大学の 大庭雅寛博士,また1名の匿名査読者に御礼申し 上げます。本論文の執筆の機会を与えてください ました,北海道大学の山本良伸先生と島根大学の 三瓶良和先生に御礼申し上げます。

引用文献

- Ade H., Zhang X., Cameron S., Costello C., Kirz J. and Williams S. (1992) Chemical contrast in X-ray microscopy and spatially resolved XANES spectroscopy of organic specimens. *Science* 258, 972-975.
- Ade H., Smith A. P., Cameron S., Cieslinski R., Mitchell G., Hsiao B. and Rightor E. (1995) X-ray microscopy in polymer science: prospects of a 'new' imaging technique. *Polymer* 36, 1843-1848.
- Ade H. and Hsiao B. (1993) X-ray linear dichroism microscopy. *Science* **262**, 1427-1429.
- Ade H. and Urquhart S. G. (2002) NEXAFS Spectroscopy and Microscopy of Natural and Synthetic Polymers. In: *Chemical Applications* of Synchrotron Radiation, ed. Sham T. K. World Scientific Publishing Singapore, 285-355.
- Boyce K. C., Cody G. D., Fesser M., Knoll A. K. and Wirick S. (2002) Organic chemical differentiation within fossil plant cell walls detected with X-ray spectromicroscopy. *Geology* **30**, 1039–1042.
- Brownlee D., Tsou P., Aléon J., Alexander C. M. O'D., Araki T., Bajt S., Baratta G. A., Bastien R., Bland P., Bleuet P., Borg J., Bradley J. P., Brearley A., Brenker

F., Brennan S., Bridges J. C., Browning N. D., Brucato J. R., Bullock E., Burchell M. J., Busemann H., Butterworth A., Chaussidon M., Cheuvront A., Chi M., Cintala M. J., Clark B. C., Clemett S. J., Cody G. D., Colangeli L., Cooper G., Cordier P., Daghlian C., Dai Z., D'Hendecourt L., Djouadi Z., Dominguez G., Duxbury T., Dworkin J. P., Ebel D. S., Economou T. E., Fakra S., Fairey S. A. J., Fallon S., Ferrini G., Ferroir T., Fleckenstein H., Floss C., Flynn G., Franchi I. A., Fries M., Gainsforth Z., Gallien J.-P., Genge M., Gilles M. K., Gillet P., Gilmour J., Glavin D. P., Gounelle M., Grady M. M., Graham G. A., Grant P. G., Green S. F., Grossemy F., Grossman L., Grossman J. N., Guan Y., Hagiya K., Harvey R., Heck P., Herzog G. F., Hoppe P., Hörz F., Huth J., Hutcheon I. D., Ignatyev K., Ishii H., Ito M., Jacob D., Jacobsen C., Jacobsen S., Jones S., Joswiak D., Jurewicz A., Kearsley A. T., Keller L. P., Khodja H., Kilcoyne A. L. D., Kissel J., Krot A., Langenhorst F., Lanzirotti A., Le L., Leshin L. A., Leitner J., Lemelle L., Leroux H., Liu M-C., Luening K., Lyon I., MacPherson G., Marcus M. A., Marhas K., Marty B., Matrajt G., McKeegan K., Meibom A., Mennella V., Messenger K., Messenger S., Mikouchi T., Mostefaoui S., Nakamura T., Nakano T., Newville M., Nittler L. R., Ohnishi I., Ohsumi K., Okudaira K., Papanastassiou D. A., Palma R., Palumbo M. E., Pepin R. O., Perkins D., Perronnet M., Pianetta P., Rao W., Rietmeijer F. J. M., Robert F., Rost D., Rotundi A., Ryan R., Sandford S. A., Schwandt C. S., See T. H., Schlutter D., Sheffield-Parker J., Simionovici A., Simon S., Sitnitsky I., Snead C. J., Spencer M. K., Stadermann F. J., Steele A., Stephan T., Stroud R., Susini J., Sutton S. R., Suzuki Y., Taheri M., Taylor S., Teslich N., Tomeoka K., Tomioka N., Toppani A., Trigo-Rodríguez J. M., Troadec D., Tsuchiyama A., Tuzzolino A. J., Tyliszczak T., Uesugi K., Velbel M., Vellenga J., Vicenzi E., Vincze L., Warren J., Weber I., Weisberg M., Westphal A. J., Wirick S., Wooden D., Wopenka B., Wozniakiewicz P., Wright I., Yabuta H., Yano H., Young E. D., Zare R. N., Zega T., Ziegler K., Zimmerman L., Zinner E. and Zolensky M. (2006) Comet 81P/Wild 2 under a microscope.

Science **314**, 1711-1716.

- Cody G. D., Botto R. E., Ade H., Wirick S., (1996) The application of soft X-ray microscopy to the in-situ analysis of sporinite in coal. *Int. J. Coal Geol.* **32**, 69-86.
- Cody G. D., Ade H., Wirick S., Mitchell G. D., Davis A. (1998) Determination of chemical structural changes in vitrinite accompanying luminescence alteration using C-NEXAFS analysis. Org. Geochem. 28, 441-455.
- Cody G. D. (2000) Probing chemistry within the membrane structure of wood with soft X-ray spectral microscopy, In: X-ray Microscopy: Proceedings of the Sixth International Conference, ed. Meyer-Ilse W., Warwick T. and Attwood D. American Institute of Physics, Melville, NY.
- Cody G. D., Ade H., Alexander C. M. O'D., Araki T., Butterworth A., Fleckenstein H., Flynn G. J., Gilles M. K., Jacobsen C., Kilcoyne A. L. D., Messenger K., Sandford S. A., Tyliszczak T., Westphal A. J., Wirick S. and Yabuta H. (2008a) Quantitative organic and light element analysis of comet Wild 2 particles using C-, N-, and O-μ-XANES. *Meteor. Planet. Sci.* 43, 353-365.
- Cody G. D., Alexander C. M. O'D., Yabuta H., Kilcoyne
 A. L. D., Araki T., Ade H., Dera P., Fogel, M., Militzer
 B. and Mysen B. O. (2008b) Organic thermometry for chondritic parent bodies. *Earth Planet. Sci. Lett.* 272, 446–455.
- El Amri C., Maurel M.-C., Sagon G. and Baron M.-H. (2005) The micro-distribution of carbonaceous matter in the Murchison meteorite as investigated by Raman imaging. *Spectrochim. Acta Part A* 61, 2049–2056.
- Flynn G. J., Keller L. P., Feser M., Wirick S. and Jacobsen C. (2003) The origin of organic matter in the solar system: Evidence from the interplanetary dust particles. *Geochim. Cosmochim. Acta* 67, 4791-4806.
- Hitchcock A. P. and Mancini D. C. (1994) Bibliography and database of inner shell excitation spectra of gas phase atoms and molecules. J. Electron Spec. Rel. Phenom. 67, 1-132.

- 岩田周行,谷 克彦,和多田篤行.(2006) 走査型 透過 X 線顕微鏡の有機複合材料観察への応用. *Ricoh Tech. Rep.* **32**, 48-56.
- Keller L. P., Messenger S., Flynn G. J., Clemett S., Wirick S. and Jacobsen C. (2004) The nature of molecular cloud material in interplanetary dust. *Geochim. Cosmochim. Acta* 68, 2577-2589.
- Kilcoyne A. L. D., Tyliszczak T., Steele W. F., Fakra S., Hitchcock P., Franck K., Anderson E., Harteneck B., Rightor E. G., Mitchell G. E., Hitchcock A. P., Yang L., Warwick T. and Ade H. (2003) Interferometercontrolled scanning transmission X-ray microscopes at the Advanced Light Source. *J. Synchrotron Rad.* 10, 125–136.
- Kirz J., Jacobsen C. and Howells M. (1995) Soft x-ray microscopy and their biological applications. *Quart. Rev, Biophys.* 28, 33-130.
- Myneni S. C. B. (2002) Soft X-ray spectroscopy and spectromicroscopy studies of organic molecules in the environment. In: *Reviews in Mineralogy* and Geochemistry - Applications of Synchrotron Radiation in Low-Temperature Geochemistry and Environmental Science, ed. Fenter P., Rivers M., Sturchio N. and Sutton S. 49, 485-579.
- 中村圭子, マイケル・ゾレンスキー,スターダス トー次分析チーム (2007) スターダスト〜ミク ロの目で見る彗星の姿〜回収から一次分析ま で. 日本惑星科学会誌 *遊星人* 16,274-280.

- Sandford S. A., Aléon J., Alexander C. M. O'D., Araki T., Bajt S., Baratta G. A., Borg J., Bradley J. P., Brownlee D. E., Burucato J. R., Burchell M. J., Busemann H., Butterworth A., Clemett S. J., Cody G. D., Colangeli L., Cooper G., D'Hendecourt L., Djouadi Z., Dworkin J. P., Ferrini G., Fleckenstein H., Flynn G. J., Franchi I. A., Fries M., Gilles M. K., Glavin D. P., Gounelle M., Grossemy F., Jacobsen C., Keller L. P., Kilcoyne A. L. D., Leitner J., Matrait G., Meibom A., Mennella V., Mostefaoui S., Nittler L. R., Palumbo M. E., Papanastassiou D. A., Robert F., Rotundi A., Snead C. J., Spencer M. K., Stadermann F. J., Steele A., Stephan T., Tsou P., Tyliszczak T., Westphal A. J., Wirick S., Wopenka B., Yabuta H., Zare R. N. and Zolensky M. (2006) Organics captured from Comet 81P/Wild 2 by the Stardust spacecraft. Science 314, 1720-1724.
- Stöhr J. (1992) NEXAFS Spectroscopy. Springer, New York.
- 薮田ひかる. (2008) 隕石有機物の構造・同位体 分析による母天体変成過程の化学的解明. Res. Org. Geochem. 23/24, 73-97.
- Westphal A. J., Snead C., Butterworth A., Graham G. A., Bradley J. P., Bajt S., Grant P. G., Bench G., Brennan S., Pianetta P. (2004) Aerogel Keystones: Extraction of complete hypervelocity impact events from aerogel collectors. *Meteor. Planet. Sci.* 39, 1375-1386.